2.2.12 The Distributed Transaction Classes

The distributed transaction classes provide support forthe X-Open XA architecture.

The dtx-demarcation class is used to demarcatetransaction boundaries on a given channel that is
subsequently used to perform AMQP native transactional work (produce publish messages). Transaction
coordination and recovery operations are provided by the dtx-coordination class.

Both OMG OTS and JTS/JITA models rely on “Resource Manager Client”, RM Client, instances (object
identified by Rmids through the xa_swich in c/c++or XAResource instances in Java) that implement the
XA interface for the underlying resourceto participate with a global transaction.

As depicted on the following figure, a Transaction Manageruses RM Client XA interfaceto demarcate
transaction boundaries and coordinate transaction outcomes. RM Clients use the dtx-demarcation class to
associate transactional workwith a transactional channel. The transactional channelis exposed to the
application driving the transaction. The application can then use the transactional channel to
transactionally produce and consume messages. RM clients use dtx-coordination to propagate
transaction outcomes and recovery operations to the AMQP broker. A second coordinatian channel can

be used for that purpose.
Coordination
channel
—prepare/commit/rollback/... @
XA X
TM ‘ A end/start
RM

start/co$t/rol]back A Client AMQP
M 1en Transactional Broker

<_pr°d”°° Q channel

Application consume ﬂ

2.2.12.1 The Distributed Transaction Demarcation Class

The dtx-demarcation class allows a channel to be selected for use with distributed transactions and the
transactional boundaries for work on that channel to bedemarcated.

Class semantics
The semantics of the dtx class are as follows:

1. Resource Manager Client asks for server XA support on a transactional channel (dtx-
demarcation.select).

2. The transaction manager informs Resource Manager Client of transaction association. Resource
Manager Client invokes dtx-demarcation.starton its transactional channel.

3. The application uses Resource Manager Client transactional channel to do work within the scope
of the transaction branch (publish, consume, ack)

4. The Transaction Manager informs Resource Manager Client that transactianal work ends.
Resource Manager Client invokes tdtx-demarcation.end on its transactional channel.

2.2.12.2 The Distributed Transaction Coordination Class

The dtx-coordination class allows the transaction managerto coordinate transaction outcomes and to

drive transaction recovery.

Class semantics
The semantics of the dtx-coordination class are as follows:

1. Transaction Managerdemarcates transactions through Resource Manager Client and application
uses Resource Manager Client transactiond channel to perform transactional work.

2. Transaction Managercoordinates transaction outcane on its Resource Manager Clients. Resource
Manager Client invokes corresponding dtx-coordination methods (prepare, commit, rollback).

3. After recovering from a failure, Transaction Manager drives recovery through the Resource
Manager Client that invokes corresponding dtx-coordination methods (recover, forget, commit,
rollback).

2.2.12.3 Distributed Transaction Use Cases

The following diagram illustrates a messaging scenario where an application “Application”
transactionally consumes a message from a queue Q1 (using transaction T1 achieved through the
transaction manger TM). Based on the consumed message, the application updates a database table Tb
using DBMS and produces a message on queue Q2 on behalf transaction T1.

Application ™ DBMS RM Client AMQP RM Client AMQP broker

4beg+n—> ; Transactional
- xa_start(T1) p» ; Channel

xa_start(T1) g

Coordination
Channel

The purpose of the dtx-demarcation.selectoperation is forthe server to optimize handling of distributed
transactions. The Resource Manager client MUST use this method at least once on a channel before
performing distributed transactional work.A channel that is selected for XA work cannot be de-selected.

Any work performed within transactional blocks (a transactional block is delimited by dtx-demarcation
.start/dtx-demarcation .end) is done on behalf a transaction branch identified by Xid. Any other operation
outside a transactional block is non-transactional.

Only acknowledged consumed messages are seen as being transactionaly consumed.

Any channel can be used for performing transaction coordination and recovery operations .

Implementation notes

e A Resource Manager Client can use the same channel for invoking demarcation and coordination
methods.

e When a transactional channel is closed then the workdone under the currently associated

transaction branchis rolled back.

This is the responsibility of the broker implementation to maintain a list of indoubt and
heuristically completed transaction branches. The corresponding Xids arereturned to the
Transaction Manager when the method recoveris invoked.

It is possible for more than one channelto be associated with the same Xid. All channels will be
disassociated (end) from the given Xid before the transaction outcome commands are called.

IT is the responsibility of the broker to return an error code when coordination methods are
called with an unknown or still associated Xid.

	2.2.12 The Distributed Transaction Classes
	2.2.12.1 The Distributed Transaction Demarcation Class
	Class semantics

	2.2.12.2 The Distributed Transaction Coordination Class
	Class semantics

	2.2.12.3 Distributed Transaction Use Cases
	Implementation notes

